Bootstrap confidence interval estimates of the bullwhip effect
نویسندگان
چکیده
This paper introduces the confidence interval estimate for measuring the bullwhip effect, which has been observed across most industries. Calculating a confidence interval usually needs the assumption about the underlying distribution. Bootstrapping is a non-parametric, but computer intensive, estimation method. In this paper, a simulation study on the behavior of the 95% bootstrap confidence interval for estimating bullwhip effect is made. Effects of sample size, autocorrelation coefficient of customer demand, lead time, and bootstrap methods on the 95% bootstrap confidence interval of bullwhip effect are presented and discussed. 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Simulation Analysis for the Bullwhip Effect in Supply Chain Model
This paper introduces the confidence interval estimate for measuring the bullwhip effect, which has been observed across most industries. Calculating a confidence interval usually needs the assumption about the underlying distribution. Bootstrapping is a non-parametric, but computer intensive, estimation method. In this paper, a simulation study on the behavior of the 95% bootstrap confidence i...
متن کاملBootstrap confidence intervals of CNpk for type‑II generalized log‑logistic distribution
This paper deals with construction of confidence intervals for process capability index using bootstrap method (proposed by Chen and Pearn in Qual Reliab Eng Int 13(6):355–360, 1997) by applying simulation technique. It is assumed that the quality characteristic follows type-II generalized log-logistic distribution introduced by Rosaiah et al. in Int J Agric Stat Sci 4(2):283–292, (2008). Discu...
متن کاملThe Design of Inverse Network DEA Model for Measuring the Bullwhip Effect in Supply Chains with Uncertain Demands
Two different bullwhip effects with equal scores may have different sensitivities and production patterns. As a result, the difference between these two seemingly equal scores has been ignored in previous methods (such as frequency response and moving average). So, the present study constructs a model of Inverse Network Data Envelopment Analysis, to introduce the relative and interval scores of...
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملNew Technical Efficiency Estimates with Improved Bootstrap Confidence Interval Coverage
Bootstrap confidence intervals on fixed-effects efficiency estimates from finite-sample panel data models exhibit low coverage probabilities, because the traditional estimate involves a "max" operator that induces a finite sample bias. Attempts to bootstrap confidence intervals for the traditional estimate have focused on correcting bias. Rather than addressing this bias at the bootstrap stage,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Simulation Modelling Practice and Theory
دوره 15 شماره
صفحات -
تاریخ انتشار 2007